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Critical behaviour of nematic liquid crystals in oblique

magnetic ® elds

by J. P. CASQUILHO

Departamento de Fisica, Faculdade de CieÃ ncias e Tecnologia
Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte da Caparica,

Portugal

(Received 25 July 1997; accepted 14 October 1997 )

The static critical behaviour of a bulk nematic liquid crystal sample in an oblique magnetic
® eld is analysed. When a magnetic ® eld is applied at a suitable angle a with respect to the
initially homogeneous nematic director, a spatially inhomogeneous director pattern can be
formed. The transition to the deformed state and the formation of walls between the domains
resulting from the two equally stable con® gurations above the transition are studied. The
width of the walls is found to diverge at the transition. The critical exponents corresponding
to the transition and wall formation are shown to be characteristic of a mean ® eld second
order phase transition.

1. Introduction leads to the same results as the two-dimensional director
® eld, while for xa<0 this is only true for a pure bendThe study of the stability of the nematic director

under external ® elds is usually a di� cult task, due to distortion mode. For oblique wavevectors, and depending
on the relative values of the ratios of the elastic constants,the complexity of the phenomena arising from the highly

non-linear system of equations which usually describe the azimuthal component of the distortion can be excited
in the case xa<0.its behaviour. Although this system is not a gradient

system, and the dissipative part usually plays an The goal of this paper is to study the critical behaviour
of the nematic director ® eld in the oblique magneticimportant role in its dynamics, the existence of a free

energy of the system and its study are su� cient to ® eld geometry, following the (static) stability analysis
approach. For simplicity, only nematics with positiveaccount for an understanding of the static phenomena.

The static study of the external ® eld-induced instabilities anisotropy of the magnetic susceptibility and bulk
samples with free boundaries are considered. In the ® rstin nematic liquid crystals is usually carried out using

minimization techniques involving hard to solve di� er- part of this work, the transition of the director from a
ential equations [1, 2]. Simpler techniques can be of homogeneous to a periodic deformed state is studied
great help in dealing with problems that could only using a two-dimensional nematic ® eld ansatz, but with a
otherwise be solved using drastic approximations. Here, generalization of the function of [4] as the perturbation.
one such technique is applied, involving the use of an Next, the formation of two equally stable con® gurations
ansatz for the director ® eld in the frame of continuum above the transition and the walls between the resulting
theory and then the study of the stability of that ® eld domains are studied. Finally, in order to characterize
using the general methods of stability theory [3]. the transition, the corresponding critical exponents are

For oblique magnetic ® elds making an angle a with obtained.
respect to the initially aligned, unperturbed director, the

2. Static stability analysisexistence of a critical angle ac for the development of
When the magnetic ® eld is applied at a suitableperiodic distortions in the director has been explained

angle with the initial homogeneous director ® eld,theoretically for a bulk nematic monodomain, using
the reorientation of the director results in a transienta two-dimensional director ® eld static analysis, with a
periodic pattern with back¯ ow. This pattern has beensimple ansatz for the tilt angle [4]. In reference [3] a
observed experimentally by optical and NMR techniquesgeneralization of the ansatz carried out in reference [4]
(see [4] and references therein). In this dynamic processwas implemented by considering a three-dimensional
the state with a periodic director ® eld is a metastabledirector ® eld ansatz instead of a two-dimensional one
state. In the static stability analysis approach theas in reference [4]. It was shown that for nematics with

positive anisotropy of the magnetic susceptibility xa this transition to the periodic director ® eld will correspond
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550 J. P. Casquilho

to a local change of stability of the free energy of bend, respectively. The surface-like terms involving the
elastic constants k24 and k13 are not considered herethe system.

Consider a bulk aligned monodomain of a nematic since they should not play a role for a two-dimensional
director ® eld as (1) [3].with positive anisotropy of the magnetic susceptibility.

A magnetic ® eld H = (H sin a, 0, H cos a) is applied at To obtain the total free energy density f (h01 , ¼ ,
h0j , ¼ , V) of the system under study, one must add toan angle a with respect to the initial homogeneous

director n0= (0, 0, 1), as shown in ® gure 1. To study the the elastic term (3) a magnetic term
stability of the director ® eld with respect to the develop-
ment of a deformation, a two-dimensional perturbed fmag=Õ

1

2
xa (n ¯ H )

2
. (4 )

director ® eld will be used:
For a bulk sample, the interesting quantity is the meann = (sin h, 0, cos h) . (1 )

free energy density per wavelength of the distortion:
Since this work concerns nematic systems with xa>0
and, according to the three-dimensional director static F (h01 , ¼ , h0j , ¼ ) =

1

2p P
2 p

0
f (h01 , ¼ , h0j , ¼ , V) dV.

stability analysis of [3], the azimuthal perturbation w

should only be excited in the xa<0 case. (5)
In order to study the transition to the distorted

The amplitudes h0j , j =1, 2, ¼ , play the roles of orderdirector ® eld, a generalization of the ansatz is used for
parameters of the system: a state with (h0j=0, j=1, 2, ¼ )the perturbation to the tilt angle h of [4], in the form
represents the unperturbed homogeneous director, whileof a Fourier series, starting with a (one-dimensional )
a state with one or more of the amplitudes h0j Þ 0bend distortion:
represents a distorted director. The goal is to investigate
the stability of the potential (5) with respect to the onseth(z) = �

2

j=1
h0j sin ( jV) , V =qzz. (2 )

of a distortion. This means studying the stability of
the potential at the origin in the order parameter spaceWhen all terms with j>1 are put to zero in equation (2),
as a function of the control parameters: the anisotropythe ansatz of [4] is recovered. With the ansatz (2) the
of the magnetic susceptibility xa , the elastic constantscorresponding gain in distortion free energy density can
K i , i =1, 2, 3 and the external parameters H and a. Thebe computed with the help of the Oseen± ZoÈ cher± Frank
wavevector q is an internal parameter of the system. Incontinuum theory [5]
a static analysis, its selection is dictated by the boundary
conditions. Here it will be considered as a free parameter,fd=

1

2
K1[ = ¯n]2+

1

2
K2[n ¯ ( = Ö n) ]2

since we are dealing with no boundary conditions. A
stability analysis based on speci® c boundary conditions

+
1

2
K3[n Ö ( = Ö n) ]2 (3 ) will be considered elsewhere [6].

The qualitative properties of a potential at a point
are governed by the lowest degree terms of its Taylorwhere the elastic constants K i , i =1, 2, 3 correspond to
series expansion about that point. The expansion up tothe three independent elastic modes of splay, twist and
second order around the origin of the potential (5) can
be written in a dimensionless form as

W (h01 , ¼ , h0j , ¼ ) ; 4F (h01 , ¼ , h0j , ¼ )/xa H
2

=W0+ �
2

j=1
a jh

2
0j+O (h

4
0j ) (6 )

with

W0=Õ ( 1 +cos 2a) (7 )

and

aj= j
2
e+cos 2a (8 )

where

Figure 1. De® nition of the sample geometry. Homogeneous e=j
2
3q

2
z (9 )

initial orientation of the director: n0= (0, 0, 1 ). Magnetic
where j3 is the bend magnetic coherence length:® eld: H = (H sin a , 0, H cos a). Perturbed director: n =

(sin h, 0, cos h ). j
2
3=K3 /xa H

2.
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551Critical behaviour of nematics

The state of deformation of the director is described
by the equilibrium points of the system, which are
determined by the condition

grad W =0 (10)

where the derivatives are taken with respect to the
order parameters h0j . The origin is a trivial solution of
equation (10). The stability properties of the equilibrium
points may be determined from the eigenvalues of the
static stability matrix [7]:

Wkl=q2
W /qkql (11)

Figure 2. Phase diagrams from equation (15) for the ® rst three
where k ; h0k and l ; h0l , k, l =1, 2, ¼ . The stability harmonics. This shows that, for xa>0, ac×[45 ß , 90 ß ].

The maximum value of e for each harmonic up to whichmatrix (11), with (6), is diagonal, with eigenvalues
a solution exists is emax ( j )=1/j

2. The lower curve de® nes
lj=a j , j=1, 2, ¼ . (12) the line of transition points (see text).

If all eigenvalues are positive, the equilibrium point is
a local minimum. When all are negative, the point is a
local maximum. In the other cases, the point has a

withsaddle shape. Only in the ® rst case is the origin then
( locally) stable. The origin is a critical point (where there e=j

2
1 q

2
x+j

2
2 q

2
y +j

2
3 q

2
z (17)

is change of stability or bifurcation ) when the control
where the j i , i =1, 2, 3, are the splay, twist and bendparameters are such that one or more eigenvalues assume
magnetic coherence lengths respectively: j

2
i =K i /xaH

2 .the value zero, which implies:

det[Wkl ]k=0,l=0=0. (13) 3. Walls

Due to the director invariance n =Õ n, a uniformThis means that the critical points of the system are at
nematic with xa>0 will align parallel or, equivalently,

a j=0, j=1, 2 ¼ . (14) anti-parallel with respect to the direction of an applied
magnetic ® eld. In the oblique magnetic ® eld geometry,Solving equation (14) in order to obtain the angle a
above the transition at a=ac , two equally stable con-gives the critical angle ac (for which bifurcation occurs)
® gurations will then be allowed. The pattern and theas a function of the control parameters, for each of the
energy of the walls between the corresponding domainsFourier components of the function h(z)
can be obtained using a similar method to that used by

cos 2ac=Õ j
2
e, j =1, 2, ¼ (15) Brochard in the (static) study of the formation of walls

in the FreÂ edericks transition [8]. Brochard walls and
where e is given by equation (9). Plotting the critical Helfrich inversion walls are two di� erent kinds of defects
angle as a function of e one gets phase diagrams as that can arise in magnetic ® elds [5]. A Helfrich splay±
shown in ® gure 2. The lower curve for ac corresponds bend wall, following a 90 ß rotation of the sample, was
to j =1. The ® gure shows that for given e the harmonics

studied in reference [4]. Here, interest is in the formation
of order greater than one can only be excited if the ® rst of walls at the transition. For simplicity, only walls
one is also excited. Since there are no possible constraints following the development of two-dimensional instabilities
that can force the director to stay in a non-deformed are studied here.
unstable state with h01 =0, this means that the ® rst In the ® rst place, the possibility of the formation of a
critical point lies at a1=0. We can then conclude that

twist wall in the presence of a splay± bend instability (in
h01 is the order parameter of the system, which will

the plane perpendicular to the twist) is investigated, and
simply be called h0 in what follows. The results for the therefore the following director is considered:
critical angle of [4] for a bend mode are then unchanged
by the addition of higher harmonics in the ansatz for h(r) =h0 ( y) sin V, V =qxx +qzz. (18)
the perturbed director.

The goal is to determine the angle h0 ( y) when goingThese results are readily generalized for distortions in
continuously from Õ h0 at y =Õ 2 to +h0 at y =+2.more than one dimension. If q is a three-dimensional
The corresponding distortion free energy density,wavevector, we get from the ® rst critical point
averaged over a wavelength of the distortion, after
performing similar calculations to those described incos 2ac=Õ e (16)
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552 J. P. Casquilho

reference [4 Ð Appendix A1], is given by and

b = (q
2
z Õ q

2
x ) (j

2
1 Õ j

2
3 ) Õ cos 2a. (26)

F ( y) =
1

8
q

2
z h

2
0C K1+K3+ (K3 Õ K1 )

J1 ( 2h0 )

h0 D A ® rst integration of equation (24) gives

+
1

8
q

2
x h

2
0C K1+K3 Õ (K3 Õ K1 )

J1 ( 2h0 )

h0 D j
2
2

b A dh0

dy B
2

= A h 
2
0 Õ h

2
0

2 B
2

(27)

where+
1

4
K2 A dh0

dy B
2

Õ
1

4
xa H

2[1 +cos ( 2a)J0 ( 2h0 ) ]

h 0= (Õ a/b)
1/2

(a<0 ) (28)
(19)

is the solution for y =Ô 2.
where the J i , i=0, 1, are Bessel functions of the ® rst h 0 is also the equilibrium value of the order parameter
kind. It is more convenient to work with an adimensional h0 in the periodic deformed state, as will be shown in
potential, which can be taken as the following steps. In order to describe the state of the

director for a <0 (a>ac ) , it is necessary to look at
W ( y) ;

4F ( y)

xa H
2 =j

2
2 A dh0

dy B
2

+
1

2
j

2
1h

2
0[q

2
z gb (h0 ) +q

2
x gs (h0 ) ] the terms of higher than second degree in the single

variable h0 ; h01 in the expansion (6). All other variables
h0j , j=2, 3, ¼ may be neglected. Keeping terms up toÕ [1 +cos ( 2a)J0 (2h0 ) ] (20)
fourth order in ho [at the transition, at a =0, b is positivewhere
for known materials, and consequently subsequent terms
in the expansion (6), for the single variable h0 , cannot

gb (h0 ) =rK+1 + (rK Õ 1 )
J1 ( 2h0 )

h0
(21 a) alter the critical behaviour of the system at the origin],

one gets the potential
and

W =W0+ah
2
0 /2 +bh

4
0 /4 (29)

gs (h0 ) =rK+1 Õ (rK Õ 1 )
J1 ( 2h0 )

h0
(21 b)

with W0 given by equation (7), from where it follows
trivially that h 0 given by (28) is the non-zero solution of

with rK=K3 /K1 .
the equation dW/dh0=0 (when a <0).

The equilibrium con® guration of the director is Integration of equation (27) yields the result
obtained by minimization of W with respect to h0 ( y).
Using results of reference [4 Ð Appendix A2], one gets

h0 ( y) =h 0thC (Õ a)
1/2

2j2
yD , (a <0 ) (30)the following Euler± Lagrange equation:

corresponding to a twist wall of width lt of orderj
2
2
d2

h0

dy
2 =

1

2
j

2
1h0[q

2
x hs (h0 ) +q

2
z hb (h0 ) ]+cos ( 2a) J1 ( 2h0 )

lt#2j2 /(Õ a)
1/2

. (31)
(22)

This result shows that lt � 2 when a � ac . Comment is
with made in the next section on this divergence of the wall

hb (h0 ) =rK+1 + (rK Õ 1 ) J0 ( 2h0 ) (23 a) width, which is similar to that found with Brochard
walls at the FreÂ edericks transition [5, 8]. The energyand
stored per unit surface of the twist wall can be easily

hs (h0 ) =rK+1 Õ (rK Õ 1 ) J0 ( 2h0 ) . (23 b) computed using equation (27):

Not too far from the transition, we can keep terms only
W t=

1

2
K2 P 2

Õ 2 A dh0

dy B
2

dy =
1

2
K2 P h:0

Õ h:0

dh0

dy
dh0up to the third order in h0 in the rhs of equation (22),

giving

=
1

3

K2

j2

(Õ a)
3/2

b
(a<0 ) (32)

2j
2
2
d2

h0

dy
2 =ah0+bh

3
0 (24)

which is positive, since b >0 for a < 0.with
Next the possibility of the formation of a splay± bend

a =2 (j
2
1 q

2
x+j

2
3 q

2
z +cos 2a) (25 a) wall is studied. To search for such a conformation of the

director, the following ansatz is chosenor, using equation (16) with qy=0

a =2 (cos 2a Õ cos 2ac ) (25 b) h (r) =h0 (x ) sin V, V =qyy +qzz (33)
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553Critical behaviour of nematics

and the angle h0 (x ) is sought when going continuously Following the same method as in the preceding case, we
get for such a wallfrom Õ h0 at x =Õ 2 to +h0 at x =+2. The corres-

ponding free energy, averaged over a wavelength and
written in dimensionless form, gives the following h0 (z) =h 0 thC (Õ a)

1/2

2j3
zD (a <0 ) (42)

potential

with
W (x ) =j

2
2 q

2
y h

2
0+

1

2
j

2
1C q

2
z h

2
0gb (h0 ) + A dh0

dx B
2

gs (h0 )D a =2 (j
2
1 q

2
x +j

2
2q

2
y +cos 2a) (43 a)

Õ [1 +cos ( 2a)J0 ( 2h0 ) ]. (34) or, using (16) with qz=0

Proceeding as before, the corresponding Euler± a =2 (cos 2a Õ cos 2ac ) (43 b)
Lagrange equation, keeping terms up to h

3
0 , is

of width of order

lbs# 2j3 /(Õ a)
1/2 (44)j

2
1G 2

d2
h0

dx
2 + A K3

K1
Õ 1B C h

2
0

2

d2
h0

dx
2 + A 1 Õ

h0

2 B A dh0

dx B
2 D H

which shows the same critical behaviour as in the
=ah0+bh

3
0 (35) preceding cases.

The energy per unit surface stored in the bend± splaywith
wall can be computed, in the K1=K3 approximation,

a =2 (j
2
2 q

2
y +j

2
3 q

2
z +cos 2a) (36 a) with the same method used in the preceding case. The

result is again expression (40), now with a given by
or, using equation (16) with qx=0 (43). This expression, as well as expression (32) in the

K1=K3 case, appears to diverge at a =45 ß . This deservesa =2 (cos 2a Õ cos 2ac ) (36 b)
the following comment: the formation of a wall occurs

and at the critical angle (when a =0), and since for a sample
with xa>0 ac×[45 ß , 90 ß ], this means that only when

b =j
2
3q

2
z A K1

K3
Õ 1B Õ cos 2a. (37) ac=45 ß could a divergence arise, but in this case the

energy density is
In the K1=K3 approximation, equation (35) can

W
ac=

45 ß 3
K

j
(Õ cos 2a)

1/2 (45)be easily solved by the same method followed for
equation (24), giving the solution

which is properly equal to zero when a =45 ß . This
argument is readily generalized for expression (32) inh0 (x ) =h 0 thC (Õ a)

1/2

2j1
xD (a <0 ) (38)

the K1 Þ K3 case.

where h 0 is given by (28) with (36± 37), now with
4. Critical exponents

K1=K3 . This solution corresponds to a splay± bend
The calculation of the critical exponents, correspond-wall, of width of order

ing to the transition at a=ac , in the oblique magnetic
lsb# 2j1 /(Õ a)

1/2 (39) ® eld geometry, allows further insight to be obtained on
the nature of that transition. The interesting exponents

which, as in the twist wall case, shows a divergence at
in this case are b, n and c.

the transition point (a =0).
The exponent b, associated with the order parameter,

The energy per unit surface stored in the splay± bend
can be easily obtained. The quantity a given by equations

wall can be computed, with the same method used for
(25 b), (36 b) or (43 b) is a measure of the deviation from

the preceding case, in the K1=K3 ; K approximation,
the critical angle. From equation (28) we get for the

giving
order parameter above the transition

h03 (Õ a)
1/2 (46)W sb=

1

3

K

j

(Õ a)
3/2

(Õ cos 2a)
, j= A K

xa H
2B

1/2

(a <0 )

giving the classical (mean ® eld ) value b=1/2, which
(40) characterizes second order phase transitions in mean

® eld models [9]. This is consistent with the form of thewhich is positive, since for a <0, a>ac > 45 ß .
(adimensional ) free energy given by equation (29).Finally, a bend± splay wall is sought with the ansatz

The exponent n, associated with the correlation length,
can be obtained from the expressions (30), (39) or (44)h(r) =h0 (z) sin V, V =qx x +qyy. (41)
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554 Critical behaviour of nematics

for the width of the walls

l3 (Õ a) Õ
1/2 (47)

giving n=1/2, again the classical value [9]. This
divergence of l at the transition point can then be
explained in the frame of the general theory of second
order transitions, where the correlation length diverges.

In order to obtain the exponent c, associated with the
susceptibility, perturbations to the potential (29) are
now considered. This potential applies to a perfect
nematic monodomain with free boundaries and is clearly
not valid in the presence of defects of the nematic

Figure 3. Plot of the equilibrium value h 0 for the potentialdirector ® eld. There is a formal way of generalizing the
(48) as a function of cos 2a/cos 2ac , with a given byformer expression in order to take defects or boundary
equation (25) and b by (26 ), with qx=0 and K3 /K1=0 5́,

e� ects into account, with the help of catastrophe theory. for three values of the imperfection parameter: (1) s=1,
In the frame of catastrophe theory, it can be shown that (2) s =0 2́5, (3 ) s =0. This plot shows the symmetry-
the most general perturbation of the perfect potential breaking e� ect of a non-zero s . Curve (3) gives the

equilibrium value (28) of the perfect potential (29), which(29) is a linear term in the order parameter h0 [7],
is the bifurcation diagram in the form of the standardgiving for the imperfect potential
trident characteristic of a second order phase transition.

W imp=W0+sh0+ah
2
0 /2 +bh

4
0 /4 (48)

with the initial director, from the homogeneous to thewhere s is called the imperfection parameter. In
deformed state.equation (48), the potential Wimp Õ W0 has the form of a

In the oblique magnetic ® eld geometry, above thecusp catastrophe . The adding of a linear term to (29)
transition at ac , two equally stable con® gurations arehas a symmetry-breaking consequence, as shown in
allowed. It was shown that there can be formed twist,® gure 3. The second-order transition will disappear under
splay± bend or bend± splay walls between the correspond-an arbitrarily small symmetry-breaking perturbation,
ing domains, of well de® ned energy. The width of theand the transition may reappear at a distant point as
walls diverges as the transition is approached from above.a ® rst order transition [7]. This behaviour is related

Finally, the calculation of the critical exponents corres-to the structural instability of second order phase
ponding to the transition and wall formation at a =actransitions.
allows the transition to be understood as a mean ® eldAn immediate consequence of adding the linear term
second order phase transition.in the order parameter to the potential (29) is that one

can now easily obtain from it the critical exponent c.
The author wishes to thank Prof. J. FigueirinhasFrom q2

Wimp /qsqh0=0 one gets for the equivalent of a
for helpful comments. This work was partly ® nancedsusceptibility
by JNICT of Portugal under research contract
PBIB/C/CEN/1049/92.A qh 0

qs Bs=0
3a Õ

1 (49)
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